Sains Malaysiana 54(1)(2025): 121-130

http://doi.org/10.17576/jsm-2025-5401-10

 

Manipulasi Struktur Hablur Selulosa: Sifat Mekanik, Morfologi, Terma dan Biodegradasi Komposit berasaskan Polietilena

(Manipulation of Cellulose Crystalline Structure: Mechanical, Morphological, Thermal and Biodegradation Properties of Polyethylene-based Composites)

 

NOOR AFIZAH ROSLI* & ISHAK AHMAD

 

Jabatan Sains Kimia, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 2 August 2024/Accepted: 13 September 2024

 

Abstrak

Kehabluran selulosa yang boleh memberi kesan kepada sifat komposit termoplastik boleh diubah melalui pelbagai kaedah rawatan, termasuk rawatan mekanik atau kimia. Dalam kajian ini, kehabluran selulosa dimanipulasi menggunakan pengisar bebola mekanik. Objektif utama kajian ini adalah untuk menilai kesan pengubahan kehabluran selulosa terhadap prestasi keseluruhan komposit berasaskan polietilena berketumpatan tinggi (HDPE). Sifat komposit dinilai melalui ujian tegangan dan hentaman, spektroskopi inframerah pantulan keseluruhan dikecilkan (ATR-IR), mikroskop elektron pengimbasan (SEM), analisis termogravimetri (TGA) dan ujian biodegradasi tanah. Kesan kehabluran selulosa terhadap sifat mekanik komposit HDPE mendedahkan peningkatan kekuatan tegangan sebanyak 5% dengan penambahan 2% selulosa hablur rendah (LCC). Sebaliknya, kekuatan hentaman tertinggi komposit HDPE dicapai melalui penggabungan 6% LCC. Analisis ATR-IR menunjukkan bahawa keamatan puncak komposit HDPE-LCC berkurangan, manakala komposit HDPE dengan selulosa hablur tinggi (HCC) tidak menunjukkan sebarang perubahan keamatan puncak berbanding dengan spektrum HDPE. Pemeriksaan SEM mendedahkan bahawa LCC mempunyai sebaran yang lebih baik dalam matriks HDPE berbanding HCC. Degradasi terma berkurang sebanyak 32% dengan penambahan kedua-dua HCC dan LCC. Kajian biodegradasi tanah menunjukkan bahawa sifat mekanik komposit HDPE-LCC merosot dengan lebih besar berbanding komposit HDPE-HCC selepas 24 bulan dalam tanah. Secara keseluruhan, kajian ini menyimpulkan bahawa pengubahan kehabluran selulosa dapat membawa kepada penghasilan komposit dengan sifat yang dilaraskan.

 

Kata kunci: Amorfus; biodegradasi tanah; polietilena berketumpatan tinggi; selulosa mikrohablur

 

Abstract

Cellulose crystallinity can be altered by various treatment methods, including mechanical or chemical treatments, which can affect the properties of thermoplastic composites. In this study, the crystallinity of cellulose was manipulated using mechanical ball milling. The primary objective was to assess the impact of altering the cellulose crystallinity on the overall performance of high-density polyethylene (HDPE)-based composites. The mechanical and structural properties of the composites were assessed using tensile and impact tests, attenuated total reflectance infrared (ATR-IR) spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The degradation properties of the HDPE composites were evaluated using a soil-burial degradation test. The impact of cellulose crystallinity on the mechanical properties of HDPE composites showed a marginal enhancement of 5% in tensile strength with the incorporation of 2% low-crystallinity cellulose (LCC). The highest impact strength of the HDPE composites was attained by the incorporation of 6% LCC. ATR-IR analysis showed that the peak intensity of the HDPE-LCC composite decreased, whereas the HDPE composite with high-crystallinity cellulose (HCC) did not exhibit changes in peak intensity compared to the HDPE spectrum. SEM examination showed that LCC possessed superior dispersion in the HDPE matrix compared to that of HCC. Thermal degradation decreased by up to 32% with the addition of HCC and LCC. A soil burial degradation study showed that the mechanical properties of the HDPE-LCC composite deteriorated more than those of the HDPE-HCC composite after 24 months. This study concluded that altering the crystallinity of cellulose can lead to composites with tailored properties.

 

Keywords: Amorphous; high-density polyethylene; microcrystalline cellulose; soil burial

 

REFERENCES

Abba, H.A., Zahari, I.N., Sapuan, S.M. & Leman, Z. 2017. Characterization of millet (Pennisetum glaucum) husk fiber (MHF) and its use as filler for high density polyethylene (HDPE) composites. BioResources 12(4): 9287-9301.

Bhasney, S.M., Mondal, K., Kumar, A. & Katiyar, V. 2020. Effect of microcrystalline cellulose [MCC] fibres on the morphological and crystalline behaviour of high density polyethylene [HDPE]/polylactic acid [PLA] blends. Composites Science and Technology 187: 107941.

Bioplastics. 2018. Bioplastics Market Data 2018. European.

Borisova, Y.Y., Minzagirova, A.M., Gilmanova, A.R., Galikhanov, M.F., Borisov, D.N. & Yakubov, M.R. 2019. Heavy oil residues: Application as a low-cost filler in polymeric materials. Civil Engineering Journal 5(12): 2554-2568.

Ghosh, A. 2023. Enhancing the thermoplastic behavior and mechanical performance of recycled HDPE/CaCO3 composites using oxidized polyethylene. Journal of Applied Polymer Science 140(23): e53923.

Jubinville, D., Chen, G. & Mekonnen, T.H. 2023. Simulated thermo-mechanical recycling of high-density polyethylene for the fabrication of hemp hurd plastic composites. Polymer Degradation and Stability 211: 110342.

Khoo, K.S., Ho, L.Y., Lim, H.R., Leong, H.Y. & Chew, K.W. 2021. Plastic waste associated with the COVID-19 pandemic: Crisis or opportunity? Journal of Hazardous Materials 417: 126108.

Khouaja, A., Koubaa, A. & Daly, H.B. 2021. Dielectric properties and thermal stability of cellulose high-density polyethylene bio-based composites. Industrial Crops and Products 171: 113928.

Li, J., Song, Z., Li, D., Shang, S. & Guo, Y. 2014. Cotton cellulose nanofiber-reinforced high density polyethylene composites prepared with two different pretreatment methods. Industrial Crops and Products 59: 318-328.

Makhlouf, A., Belaadi, A., Amroune, S., Bourchak, M. & Satha, H. 2022. Elaboration and characterization of flax fiber reinforced high density polyethylene biocomposite: Effect of the heating rate on thermo-mechanical properties. Journal of Natural Fibers 19(10): 3928-3941.

Mazur, K., Jakubowska, P., Romańska, P. & Kuciel, S. 2020. Green high density polyethylene (HDPE) reinforced with basalt fiber and agricultural fillers for technical applications.  Composites Part B: Engineering 202: 108399.

Mulinari, D.R., Voorwald, H.J.C., Cioffi, M.O.H. & da Silva, M.L.C.P. 2017. Cellulose fiber-reinforced high-density polyethylene composites - Mechanical and thermal properties.   Journal of Composite Materials 51(13): 1807-1815.

Mulinari, D.R., Voorwald, H.J.C., Cioffi, M.O.H., da Silva, M.L.C.P., da Cruz, T.G. & Saron, C. 2009. Sugarcane bagasse cellulose/HDPE composites obtained by extrusion. Composites Science and Technology 69(2): 214-219.

Pöllänen, M., Suvanto, M. & Pakkanen, T.T. 2013. Cellulose reinforced high density polyethylene composites - Morphology, mechanical and thermal expansion properties.  Composites Science and Technology 76: 21-28.

Ren, Z., Guo, R., Zhou, X., Bi, H., Jia, X., Xu, M., Wang, J., Cai, L. & Huang, Z. 2021. Effect of amorphous cellulose on the deformation behavior of cellulose composites: Molecular dynamics simulation. RSC Advances 11(33): 19967-19977.

Rosli, N.A., Wan Ishak, W.H., Darwis, S.S., Ahmad, I. & Mohd Khairudin, M.F.A. 2021. Bio-nanocomposites based on compatibilized poly(lactic Acid) blend-reinforced agave cellulose nanocrystals. BioResources 16(3): 5538-5555.

Rosli, N.A., Ahmad, I., Anuar, F.H. & Abdullah, I. 2019. Effectiveness of cellulosic Agave angustifolia fibres on the performance of compatibilised poly(lactic acid)-natural rubber blends. Cellulose 26(5): 3205-3218.

Rosli, N.A., Ahmad, I., Abdullah, I., Anuar, F.H. & Mohamed, F. 2015. Hydrophobic modification of cellulose isolated from Agave angustifolia fibre by graft copolymerisation using methyl methacrylate. Carbohydrate Polymer 125: 69-75.

Tajeddin, B. & Abdulah, L.C. 2010. Thermal properties of high density polyethylene kenaf cellulose composites. Polym. Polymer Composite 18(5): 257-261.

Tran, T.N., Paul, U., Heredia-Guerrero, J.A., Liakos, I., Marras, S., Scarpellini, A., Ayadi, F., Athanassiou, A. & Bayer, I.S. 2016. Transparent and flexible amorphous cellulose-acrylic hybrids. Chemical Engineering Journal 287: 196-204.

Wan Ishak, W.H., Rosli, N.A. & Ahmad, I. 2020. Influence of amorphous cellulose on mechanical, thermal, and hydrolytic degradation of poly(lactic acid) biocomposites. Scientific Reports 10(1): 11342.

Xanthopoulou, E., Chrysafi, I., Polychronidis, P., Zamboulis, A. & Bikiaris, D.N. 2023. Evaluation of eco-friendly hemp-fiber-reinforced recycled HDPE composites. Journal of Composites Science 7(4): 138.

Zhang, B., Bu, X., Wang, R., Shi, J., Chen, C. & Li, D. 2021. High mechanical properties of micro fibrillated cellulose/HDPE composites prepared with two different methods.  Cellulose 28(9): 5449-5462.

Zhang, L., Liu, H., Zheng, L., Zhang, J., Du, Y. & Feng, H. 1996. Biodegradability of regenerated cellulose films in soil. Industrial & Engineering Chemistry Research 35(12): 4682-4685.

 

*Corresponding author; email: nafizah@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next